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1.    Introduction   

 

       We consider two-dimensional autonomous systems of differential equations 

of the form 

 

 

, ,

, ,

dx
x F x y

dt

dy
y G x y

dt


  


   


                                                 (1) 

where  ,F x y and  ,G x y are real’s functions. In the qualitative theory of planar 

dynamical systems [1, 8, 9], one of the most important topics is related to the 

second part of the unsolved Hilbert 16th problem [18]. There is a huge literature 

about limit cycles, most of them deal essentially with their detection, their number 

and their stability and rare are papers concerned by giving them explicitly [2, 3, 6, 

11, 13]. There exist three main open problems in the qualitative theory of real 

planar differential systems, the distinction between a centre and a focus, the 

determination of the number of limit cycles and their distribution, and the 

determination of its integrability. The importance for searching first integrals of a 

given system was already noted by Poincaré in his discussion on a method to 

obtain polynomial or rational first integrals. One of the classical tools in the 

classification of all trajectories of a dynamical system is to find first integrals. 

Giné and Llibre characterized a large classes of polynomial differential systems in 

terms of the existence of first integrals [4, 7, 9, 12, 16, 17, 21]. For more details 

about first integral see for instance [10, 14, 15, 19, 20] see the references quoted 

in those articles. We recall that in the phase plane, a limit cycle of system (1) is an 

isolated periodic orbit in the set of all periodic orbits of system (1). 

        System (1) is integrable on an open set   of 2R  if there exists a non 
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constant 1C  function :H R , called first integral of the system on   , 

which is constant on the trajectories of the system (1) contained in  ,   i.e. if 

   
 

 
 

, , ,
, , 0  in the points of .

dH x y H x y H x y
F x y G x y

dt x y

 
   

 
 

Moreover, H h  is the general solution of this equation, where h  is an arbitrary 

constant. It is well known that for differential systems defined on the plane  2R   

the existence of the first integral determines their phase portrait (see [5]). 

In this paper we are interested in studying the existence of the first integral 

and to the curves which are formed by the trajectories of the 2-dimensional 

differential systems of the form 

     

  
     

  

1

2

1

2

,

1 3 ,

,

2 3 ,

, , cos ,

, , cos ,

A x y

A x y

A x y

A x y

x B x y xB x y

y B x y yB x y

   


  



                           (2) 

where   1 , ,A x y  2 , ,A x y  1 , ,B x y  2 , ,B x y  3 ,B x y are homogeneous 

polynomials of degree ,a ,a ,n ,n m  respectively. 

We define the trigonometric functions   

        1 1 2cos ,sin cos cos ,sin sin ,f B B          

      

  1

2

cos ,sin

2 3 cos ,sin
cos ,sin cos ,

A

A
f B

 

 
     

          3 2 1cos cos ,sin sin cos ,sin .f B B          

 

2. Main result 

 

       Our main result on the existence of the first integral and the curves which are 

formed by the trajectories of the 2-dimensional differential systems (2) is the 

following. 

Theorem 1. Consider a two-dimensional differential system (2), then the 

following statements hold. 

(1)  If   3 0,f    2 cos ,sin 0A     and 2,n m   then system (2) has the first 

integral  

       

        

1
2

arctan
2 2

arctan

, exp 1

1 exp 1 ,

n m y

x

y
w

x

H x y x y m n M d

n m m n M d N w dw

 

 

   
     

 

   



 

 

where     

 
1

3

f

f
M




   ,    

 
2

3

,
f

f
N




  and the phase portrait of the differential system 

(2), in Cartesian coordinates is given by 



 ADVANCED MATH. MODELS & APPLICATIONS, V.2, N.1, 2017 

 
40 

 

    
      

      

2
1

arctan

arctan2 2

arctan

exp 1

1 exp 1 ,

exp 1

n my

x

y

x

y

x
w

h n m M d

x y n m n m M d

m n M d N w dw

 

 

 

     
 

      
 
    
 

 

where R.h Moreover, the system (2) has no periodic orbit in one of open 

quadrants. 

(2)   If  3 0,f    2 cos ,sin 0A     and  2,n m   then system (2) has the first 

integral 

        
1
2

arctan
2 2, exp ,

y

xH x y x y M N d  
 

    
 
  

and the phase portrait of the differential system (2) , in Cartesian coordinates is 

given by 

      
1
2

arctan
2 2 exp 0,

y

xx y h M N d  
 

     
 
  

where R.h  Moreover, the system (2) has no limit cycle. 

 (3)  If   3 0f     for all  R,   then system (2) has the first integral ,
y

x
H    and 

the phase portrait of the differential system (2), in Cartesian coordinates is given 

by  0,y hx   where R.h Moreover, the system (2) has no limit cycle. 

Proof. In order to prove our results we write two-differential system (2) in polar 

coordinates  , ,r  defined by cosx r   and sin ,y r  then system (2) becomes 

   

 

1

1 2

1

3

,

,

n m

n

r f r f r

f r

 

 





   

 

                                               (3) 

where the trigonometric functions  1 ,f   2 ,f   3f   are given in introduction,  

dr
dt

r   and 𝜃 =
𝑑𝜃

𝑑𝑡
. If   3 0,f    2 cos ,sin 0A     and 2.n m    

Taking as independent variable the coordinate  , differential system (3) is 

written as 

    2 ,m ndr
M r N r

d
 



                                                (4) 

where  
 

 
1

3

f

f
M




   and  

 

 
2

3

,
f

f
N




   which is a Bernoulli equation. By 

introducing the standard change of variables 1n mr    we obtain the linear 

equation 

      1 .
d

n m M N
d


  


                                         (5) 

The general solution of linear equation (5) is 

      
        

exp 1

1 exp 1 ,
w

n m M d

n m n m M d N w dw





   

  

  

      
 



 
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where R,  which has the first integral 

       

        

1
2 arctan2 2

arctan

, exp 1

1 exp 1 .

n m y

x

y
w

x

H x y x y m n M d

m n m n M d N w dw

 

 

   
      

 

   



 

 

Let   be a periodic orbit surrounding an equilibrium located in one of the open 

quadrants, and let  .h H     

The curves H h  with  R,h which are formed by trajectories of the 

differential system (2), in Cartesian coordinates are written as 

    
      

      

2
1

arctan

arctan2 2

arctan

exp 1

1 exp 1 ,

exp 1

n my

x

y

x

y

x
w

h n m M d

x y n m n m M d

m n M d N w dw

 

 

 

     
 

      
 
    
 

 

where R.h   

  Therefore the periodic orbit     is contained in the curve 

    
      

      

2
1

arctan

arctan2 2

arctan

exp 1

1 exp 1 .

exp 1

n my

x

y

x

y

x
w

h n m M d

x y n m n m M d

m n M d N w dw

 

 

 

 


    
 

      
 
    
 

 

But this curve cannot contain the periodic orbit   and consequently no limit 

cycle contained in the one of open quadrants, because this curve in each open 

quadrant has at most a unique point on every straight line y x  for all R.   

To be convinced by this fact, one has to compute the abscissa points of 

intersection of this curve with straight line y x  for all R,  the abscissa is 

given by 

    
      

      

2
1arctan

arctan

2

arctan

exp 1

1
1 exp 1 ,

1
exp 1

n m

w

h n m M d

x n m n m M d

m n M d N w dw







 

 


 

 


   
 
 

      
  

    

 

at most a unique value of  x , consequently at most a unique point in each pen 

quadrant. So this curve cannot contain the periodic orbit. 

Hence statement (1) of Theorem 1 is proved. 

Suppose now that  3 0,f    2 cos ,sin 0A     and 2.n m    

Taking as independent variable the coordinate ,  differential system (3) is written 

as 

   ,
dr

M r N
d

 

                                            (6) 
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where    

 
1

3

f

f
M




   and    

 
2

3

,
f

f
N




   which is a linear equation. 

The general solution of linear equation (6) is 

    
     

exp

exp ,
w

M d

M d N w dw





   

  



 



 
 

where R, which has the first integral 

   

    

arctan2 2

arctan

, exp

exp .

y

x

y
w

x

H x y x y M d

M d N w dw

 

 

 
     

 

 



 

 

Let   be a periodic orbit surrounding an equilibrium located in one of the 

open quadrants, and let  .h H     

The curves H h  with R,h  which are formed by trajectories of the 

differential system (2), in Cartesian coordinates are written as 

     
    

2
arctan arctan

2 2

arctan

exp exp
,

exp

y y

x x

y

x
w

h M d M d
x y

M d N w dw

   

 

   
   

   

 

where R.h   

Therefore the periodic orbit   is contained in the curve 

     
    

2
arctan arctan

2 2

arctan

exp exp
.

exp

y y

x x

y

x
w

h M d M d
x y

M d N w dw

   

 


   

   
   

 

But this curve cannot contain the periodic orbit   and consequently no limit 

cycle contained in the one of open quadrants, because this curve in each open 

quadrant has at most a unique point on every straight line  y x   for all  R.   

To be convinced by this fact, one has to compute the abscissa points of 

intersection of this curve with straight line y x  for all R, the abscissa is 

given by 

     
    

2
arctan arctan

arctan2

exp exp1
,

1 exp
w

h M d M d
x

M d N w dw

 



   

  


  
 
 
    

 

at most a unique value of ,x  consequently at most a unique point in each open 

quadrant. So this curve cannot contain the periodic orbit. 

Hence statement (2) of Theorem 1 is proved. 

Assume now that  3 0f    for all R.  Then from system (3) it follows that  

0.    So the straight lines through the origin of coordinates of the differential 

system (2) are invariant by the flow of this system. Hence, 
y

x
 is a first integral of 

the system, then curves which are formed by the trajectories of the differential 
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system (2), in Cartesian coordinates are written as 0,y hx  where R,h since 

all straight lines through the origin are formed by trajectories, clearly the system 

has no periodic orbits, consequently no limit cycle. 

This completes the proof of statement (3) of Theorem 1. 

Example 1. 

The following example is given to illustrate our result.  

If we take   2 2

1 , 5 4 ,A x y x y     2 2

2 , ,A x y x y   

  4 3 2 2 3 4

1 , 2 ,B x y x x y x y xy y        4 3 2 2 3 4 5

2 , 2 2 2B x y x y x y x y xy y       and  

  2 2

3 , 3 3 ,B x y x xy y   then system (2) turns to 

     
     

2 2

2 2

2 2

2 2

5 45 4 3 2 2 3 4 2 2

5 44 3 2 2 3 4 5 2 2

2 3 3 cos ,

2 2 2 3 3 cos ,

x y

x y

x y

x y

x x x y x y x y xy x x xy y

y x y x y x y xy y y x xy y









         


        



 

The two-dimensional differential system in polar coordinates  ,r   becomes 

     

 

5 33 91 1
4 8 2 2

2 2 4

1 sin 2 sin 4 3 cos sin cos cos2 ,

cos sin ,

r r r

r

    

  

      

 
 

here   3 1
1 4 8

1 sin 2 sin 4 ,f     
      9 1

2 2 2
3 cos sin cos cos2f      

 
and 

  2 2

3 cos sin ,f    it is the case (1) of the Theorem 1, then this two-dimensional 

differential system  has the first integral 

     

    

arctan
2 2

arctan

, exp 2

2 exp 2 ,

y

x

y
w

x

H x y x y M d

M d B w dw

 

 

 
    

 





 

 

where  
3 1
4 8

2 2

1 sin 2 sin 4

cos sin
M

 


 

 
 ,   

   9 1
2 2

2 2

3 cos sin cos cos2

cos sin

w w w
N w

w w

 
  . 

The curves H h  with R,h which are formed by trajectories of this differential 

system, in Cartesian coordinates are written as 

 

      

arctan2 2

arctan arctan

exp 2

2exp 2 exp 2 ,

y

x

y y
w

x x

x y h M d

M d N d N w dw

 

   

 
    

 

 
  

 



  

 

where R.h This system has no periodic orbits, and consequently no limit cycle. 

 

3.    Conclusion 
 

       The elementary method used in this paper seems to be fruitful to investigate 

more general planar rational differential systems of ODEs in order to obtain 

explicit expression for a first integral and characterizes its trajectories; this is a 

one of the classical tools in the classification of all trajectories of dynamical 

systems. 
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